Большой адронный коллайдер ЦЕРН, Франция – обзор
Icinga в действии. Мониторинг Большого Адронного Коллайдера в ЦЕРН, Швейцария/Франция
ЦЕРН и Icinga
ЦЕРН — Европейский центр ядерных исследователей, а кроме того это еще и столкновения частиц с частотой 40 МГц и 11000 оборотов по коллайдеру в минуту. Большой адронный коллайдер ЦЕРН – самый большой и мощный ускоритель частиц в мире. Icinga — бесплатная система мониторинга масштаба предприятия с открытым исходным кодом. Со своей стороны Icinga помогает устойчивой работе оборудования БАК на трёх из четырех детекторных площадок. Это оборудование ищет различия между материей и антиматерией, а также дальнейшее подтверждение существования бозона Хиггса и проверяет модели современной физики, в том виде, как мы ее сегодня знаем.
ЦЕРН – один из самых больших и уважаемых в мире центров научных исследований. Он занимается фундаментальной физикой, поиском первооснов Вселенной и законов ее существования. В ЦЕРНе для изучения составных элементов материи используются самые большие и сложные научные инструменты. Ускорители частиц разгоняют потоки частиц до высоких энергий, до тех пор пока они не соударяются друг с другом или со стационарными мишенями. Детекторы фиксируют и записывают результаты этих столкновений. Основанная в 1954 году, лаборатория CERN находится на франко-швейцарской границе рядом с Женевой. Это было одно из первых европейских совместных предприятий, в котором, на настоящий момент участвует 20 государств.
Более подробно о деятельности CERN и оборудовании экспериментов описано в статье Mgrin CERN — что из себя представляет организация за 900 млн долларов.
На глубине 100 м под франко-швейцарской границей находится 27-километровое кольцо, больше известное как Большой Адронный Коллайдер (БАК, Large Hadron Collider – LHC) который сталкивает субатомные частицы с энергией 14 ТэВ. Расположенные на 4-х площадках детекторы, суммарной массой до 12000 тонн, записывают данные экспериментов, в которых делаются попытки раскрыть исходные причины существования материи и анти-материи, проверяется существование бозона Хиггса, дополнительных измерений нашего пространства среди прочих. Для поддержания порядка и понимания процессов Icinga занимается мониторингом трёх из этих площадок: LHCb, CMS и ATLAS (рис.1):
Материя против антиматерии: мониторинг
Оборудование эксперимента LHCb (Large Hadron Collider Beauty) имеет 21 метр в длину, 13м в ширину и 10 м в высоту. С него идёт поток данных 60Гб/сек, в котором находится информация о происхождении материи и анти-материи. Система управления и цепочки сбора данных формируют информационный скелет эксперимента, работающего на машинах под управлением Windows и Linux, а также на встроенных (embedded) процессорах.
Поначалу мониторинг осуществлялся одним сайтом Nagios. Однако по мере того как IT-команда ЦЕРН попыталась масштабировать решение, на поверхность начали вылазить проблемы: средняя задержка проверки сервисов в 328 секунд оказалась слишком большой. Требовалось новое решение и администраторы обратились к Icinga и её активному сообществу.
Благодаря совместимости по конфигурациям, миграция с Nagios была относительно несложной. Тем не менее, для того чтобы облегчить будущую поддержку решения, конфигурационные файлы были реорганизованы, в них стали полностью использоваться группы и наследования между хостами. Таким образом, добавление нового объекта мониторинга в существующую категорию типа сервер СУБД, расчётный узел, система хранения и т.д. приводила к изменению только одного конфигурационного файла
Сейчас эксперимент LHCb мониторится одним экземпляром Icinga, установленным в режиме failover. Он работает совместно с исполнительными процессами mod-Gearman, удаленными агентами NRPE и NSClient++. Кроме того помимо проверок по SNMP и специализированных измерений производительности добавлено несколько специализированных проверок типа GPFS и контроля файловых систем.
Центральный сервер Icinga занимается составлением расписания проверок, которые 60 распределенных исполнительных процессов Mod-Gearman извлекают из своих очередей, выполняют их, а потом помещают результаты в еще одну очередь. (рис.2). В новой инсталляции, один экземпляр системы мониторинга Icinga в состоянии отслеживать обширное окружение в 2000 с лишним хостов и 40,000 сервисов. Задержка проверки сервисов уменьшилась с 328 секунд и сейчас составляет менее одной секунды.
Как проверить бозон Хиггса
На второй и третьей площадке находятся детекторы оборудования экспериментов CMS (Компактный Мюонный Соленоид — (Compact Muon Solenoid, КМС) и ATLAS (- An Toroidal LHC Apparatus, Тороидальный Аппарат БАК), с их помощью физики пытаются определить наличие бозона Хиггса, найти другие измерения пространства и темную материю.
В эксперименте CMS, Icinga отслеживает состояние 3000 хостов и 70 коммутаторов при помощи одного централизованного сайта мониторинга. Здесь работает один исполнительный процесс mod-gearman, NRPE и check_multi. С их помощью Icinga обрабатывает результаты 90000 проверок за каждые 2 минуты. Проверки самые разнообразные — начиная от контроля утилизации сети, наличия ошибок и количества свободного места на дисках до мониторинга состояния RAID-массивов, температуры оборудования и других специальных сервисов, так что Icinga приглядывает за всем комплексом существующего оборудования.
В эксперименте ATLAS развернуто два экземпляра Icinga, которые запущены на виртуальных машинах и работают бок о бок с Nagios. При общем количестве хостов в 3000, сервера Icinga мониторят 90 критичных сайтов на обоих сетях. Мониторинг помогает ATLAS максимизировать использование времени луча на коллайдере, и собрать для физиков наибольшее возможное количество данных.
Расширения на будущее
Уже сейчас есть планы по полной миграции системы мониторинга эксперимента ATLAS на Icinga, mod-gearman и ganglia, что позволит мониторить 3000 хостов и выполнять 100,000 проверок за один раз. Они будут включать в себя аппаратный мониторинг через IPMI, и вероятнее всего будут работать на одной центральной инсталляции системы мониторинга с исполнительным процессом mod-gearman, как и другие инсталляции icinga.
Расширение мониторинга Icinga в CMS также находится в работе. Планируется создать большее количество выделенных сервисов для мониторинга добавляемого в настоящее время программного обеспечения, на котором базируется эксперимент. В расширении границ мониторинга Icinga, команда IT CERN может быть уверена в том, что у них будет наилучшая эффективность в мониторинге БАК и эксперименты будут действительно реальной наукой. Занимательный факт — мониторинг icinga уже играл свою роль за кулисами, когда был обнаружен бозон Хиггса. И по мере того, как БАК и его оборудование продолжает сталкивать частицы и беспрепятственно собирать данные, Icinga будет работать и дальше на науку и предстоящие открытия.
Большой адронный коллайдер: назначение, открытия и мифы
Большой адронный коллайдер (БАК) — самый большой и мощный ускоритель частиц в мире. Он был построен Европейской организацией ядерных исследований (ЦЕРН).
10 000 ученых и инженеров из более чем 100 разных стран работали вместе над созданием этого проекта. Его строительство стоило 10 миллиардов долларов. В настоящее время это самая большая и сложная экспериментальная исследовательская установка в мире.
Как выглядит Большой адронный коллайдер
Это гигантский замкнутый туннель, построенный под землей. Он имеет длину 27 километров и уходит на глубину от 50 до 175 метров.
Находится коллайдер на границе Франции и Швейцарии, недалеко от города Женева.
Как работает Большой адронный коллайдер
Слово «коллайдер» в этом случае можно перевести как «сталкиватель». А сталкивает он адроны — класс частиц, состоящих из нескольких кварков, которые удерживаются сильной субатомной связью. Протоны и нейтроны являются примерами адрона.
БАК в основном использует столкновение протонов в своих экспериментах. Протоны — это части атомов с положительным зарядом. Коллайдер ускоряет эти протоны в тоннеле, пока они не достигнут почти скорости света. Различные протоны направлены через туннель в противоположных направлениях. Когда они сталкиваются, то можно зафиксировать условия, подобные ранней Вселенной.
Откуда берутся протоны в для столкновения?
Для этого ионизируются атомы водорода. Атом водорода состоит из одного протона и одного электрона. Во время ионизации удаляется электрон и остаётся нужный для эксперимента протон.
БАК состоит из трёх основных частей:
- Ускоритель частиц. Разгоняет и сталкивает протоны с помощью системы мощных электромагнитов, расположенных вдоль всего тоннеля.
- Детекторы. Результаты столкновения нельзя наблюдать напрямую, поэтому мощные детекторы улавливают максимум данных и направляют их на обработку.
- Грид. С детекторов поступают петабайты данных. Для их интерпретации используется грид-инфраструктура — сеть из компьютеров в 36 странах, которые совместно образуют один суперкомпьютер. Но даже этого хватает только на обработку 1% данных.
Зачем нужен Большой адронный коллайдер
С помощью БАК можно изучить элементарные частицы и способы их взаимодействия. Он уже многому научил нас в области квантовой физики, и исследователи надеются узнать больше о структуре пространства и времени. Наблюдения, которые делают учёные, помогают понять, какой могла быть Вселенная в течение миллисекунд после Большого взрыва.
Какие открытия совершили на БАК
На данный момент самое большое открытие — это бозон Хиггса. Это одно из важнейших открытий 21 века, объясняющее существование массы частиц во Вселенной. Это подтверждает Стандартную модель, с помощью которой сегодня физики описывают взаимодействие элементарных частиц. Именно на этом взаимодействии основано устройство всей Вселенной.
Суть работы бозона Хиггса в том, что благодаря ему другие элементарные частицы могут иметь и передавать свою массу. Но это очень и очень упрощённое понимание, и если Вам интересно, почитайте научную литературу.
С полным списком всех открытий на Большом адронном коллайдере можно ознакомиться на Википедии.
Может ли коллайер уничтожить Землю
С момента запуска БАК стал объектом разнообразных домыслов. Самый известный — в ходе экспериментов может образоваться чёрная дыра и поглотить планету.
Есть две причины, чтобы не волноваться.
- На БАК не происходит ничего такого, чего не делают космические лучи, которые ежедневно попадают на Землю, и эти лучи не создают чёрных дыр.
- Даже если Большой адронный коллайдер действительно создаст чёрную дыру, то она будет крошечной. Чем меньше чёрная дыра, тем короче ее жизнь. Такая чёрная дыра превратится в энергию, прежде чем сможет причинить вред людям.
Надеемся, Вам было интересно, как и нам во время работы над этим материалом!
Как выглядит Большой Адронный Коллайдер изнутри — видео из CERN
Крупнейший в мире ускоритель элементарных частиц — Большой адронный коллайдер (БАК), расположен около Женевы, на границе Франции и Швейцарии. Коллайдер находится под управлением ЦЕРН — Европейской организации по ядерным исследованием, и скрыт в подземном круговом тоннеле, протяженность которого составляет почти 27 километров.
Большой адронный коллайдер является самой крупной экспериментальной установкой в мире, в строительстве которой принимали участие около 10 000 инженеров и ученых из более чем 100 стран мира. Гигантское сооружение, в котором элементарные частицы ударяются друг о друга со скоростью света, предназначено для обнаружения хоть каких-нибудь отклонений от Стандартной модели в физике.
Для мониторинга правильной работы столь сложного сооружения, специально для ЦЕРН был разработан робот-инспектор по имени «TIM» (акроним от «Train Inspection Monorail»), главной задачей которого является проверка работоспособности элементов коллайдера в режиме реального времени по всей обширной системе тоннеля. Перемещение робота «ТIМ» осуществляется с помощью монорельсовой дороги, прикрепленной к потолку тоннеля. Эта монорельсовая полоса осталась еще с периода 1989-2000 годов, когда на месте тоннеля Большого адронного коллайдера функционировала другая экспериментальная установка — Большой электронно-позитронный коллайдер, которая была закрыта и демонтирована в 2001 году. В те дни монорельс выглядел немного иначе и предназначался для перемещения работников и различных необходимых объектов и вещей.
Сегодня, по обновленной монорельсовой дороге со скоростью 6 км/ч перемещаются уже не рабочие, а робот-инспектор «TIM», собирая данные по состоянию структуры тоннеля, температуры воздуха и процентного содержания кислорода. Робот также может замерять уровень излучения и предоставлять операторам визуальные и инфракрасные снимки внутри тоннеля . При необходимости, робот «TIM» может также присоединять к своему составу несколько других вагонов с различным оборудованием, предназначенным для выполнения иных задач.
На данный момент в БАК существует два робота «TIM», оба из которых выполняют задачи для обеспечения безопасной работы коллайдера. Взгляните, как выглядит этот процесс в видео, опубликованном CERN:
Источники:
http://m.habr.com/post/170135/
http://topor.info/hi-tech/bolshoj-adronnyj-kollajder
http://under35.me/2016/12/large-hadron-collider-inside/