Большой адронный коллайдер ЦЕРН, Франция — обзор

Icinga в действии. Мониторинг Большого Адронного Коллайдера в ЦЕРН, Швейцария/Франция

ЦЕРН и Icinga

ЦЕРН — Европейский центр ядерных исследователей, а кроме того это еще и столкновения частиц с частотой 40 МГц и 11000 оборотов по коллайдеру в минуту. Большой адронный коллайдер ЦЕРН – самый большой и мощный ускоритель частиц в мире. Icinga — бесплатная система мониторинга масштаба предприятия с открытым исходным кодом. Со своей стороны Icinga помогает устойчивой работе оборудования БАК на трёх из четырех детекторных площадок. Это оборудование ищет различия между материей и антиматерией, а также дальнейшее подтверждение существования бозона Хиггса и проверяет модели современной физики, в том виде, как мы ее сегодня знаем.

ЦЕРН – один из самых больших и уважаемых в мире центров научных исследований. Он занимается фундаментальной физикой, поиском первооснов Вселенной и законов ее существования. В ЦЕРНе для изучения составных элементов материи используются самые большие и сложные научные инструменты. Ускорители частиц разгоняют потоки частиц до высоких энергий, до тех пор пока они не соударяются друг с другом или со стационарными мишенями. Детекторы фиксируют и записывают результаты этих столкновений. Основанная в 1954 году, лаборатория CERN находится на франко-швейцарской границе рядом с Женевой. Это было одно из первых европейских совместных предприятий, в котором, на настоящий момент участвует 20 государств.

Более подробно о деятельности CERN и оборудовании экспериментов описано в статье Mgrin CERN — что из себя представляет организация за 900 млн долларов.

На глубине 100 м под франко-швейцарской границей находится 27-километровое кольцо, больше известное как Большой Адронный Коллайдер (БАК, Large Hadron Collider – LHC) который сталкивает субатомные частицы с энергией 14 ТэВ. Расположенные на 4-х площадках детекторы, суммарной массой до 12000 тонн, записывают данные экспериментов, в которых делаются попытки раскрыть исходные причины существования материи и анти-материи, проверяется существование бозона Хиггса, дополнительных измерений нашего пространства среди прочих. Для поддержания порядка и понимания процессов Icinga занимается мониторингом трёх из этих площадок: LHCb, CMS и ATLAS (рис.1):

Материя против антиматерии: мониторинг

Оборудование эксперимента LHCb (Large Hadron Collider Beauty) имеет 21 метр в длину, 13м в ширину и 10 м в высоту. С него идёт поток данных 60Гб/сек, в котором находится информация о происхождении материи и анти-материи. Система управления и цепочки сбора данных формируют информационный скелет эксперимента, работающего на машинах под управлением Windows и Linux, а также на встроенных (embedded) процессорах.

Поначалу мониторинг осуществлялся одним сайтом Nagios. Однако по мере того как IT-команда ЦЕРН попыталась масштабировать решение, на поверхность начали вылазить проблемы: средняя задержка проверки сервисов в 328 секунд оказалась слишком большой. Требовалось новое решение и администраторы обратились к Icinga и её активному сообществу.

Читать еще:  Город Чайтен, Чили - обзор

Благодаря совместимости по конфигурациям, миграция с Nagios была относительно несложной. Тем не менее, для того чтобы облегчить будущую поддержку решения, конфигурационные файлы были реорганизованы, в них стали полностью использоваться группы и наследования между хостами. Таким образом, добавление нового объекта мониторинга в существующую категорию типа сервер СУБД, расчётный узел, система хранения и т.д. приводила к изменению только одного конфигурационного файла

Сейчас эксперимент LHCb мониторится одним экземпляром Icinga, установленным в режиме failover. Он работает совместно с исполнительными процессами mod-Gearman, удаленными агентами NRPE и NSClient++. Кроме того помимо проверок по SNMP и специализированных измерений производительности добавлено несколько специализированных проверок типа GPFS и контроля файловых систем.

Центральный сервер Icinga занимается составлением расписания проверок, которые 60 распределенных исполнительных процессов Mod-Gearman извлекают из своих очередей, выполняют их, а потом помещают результаты в еще одну очередь. (рис.2). В новой инсталляции, один экземпляр системы мониторинга Icinga в состоянии отслеживать обширное окружение в 2000 с лишним хостов и 40,000 сервисов. Задержка проверки сервисов уменьшилась с 328 секунд и сейчас составляет менее одной секунды.

Как проверить бозон Хиггса

На второй и третьей площадке находятся детекторы оборудования экспериментов CMS (Компактный Мюонный Соленоид — (Compact Muon Solenoid, КМС) и ATLAS (- An Toroidal LHC Apparatus, Тороидальный Аппарат БАК), с их помощью физики пытаются определить наличие бозона Хиггса, найти другие измерения пространства и темную материю.

В эксперименте CMS, Icinga отслеживает состояние 3000 хостов и 70 коммутаторов при помощи одного централизованного сайта мониторинга. Здесь работает один исполнительный процесс mod-gearman, NRPE и check_multi. С их помощью Icinga обрабатывает результаты 90000 проверок за каждые 2 минуты. Проверки самые разнообразные — начиная от контроля утилизации сети, наличия ошибок и количества свободного места на дисках до мониторинга состояния RAID-массивов, температуры оборудования и других специальных сервисов, так что Icinga приглядывает за всем комплексом существующего оборудования.

В эксперименте ATLAS развернуто два экземпляра Icinga, которые запущены на виртуальных машинах и работают бок о бок с Nagios. При общем количестве хостов в 3000, сервера Icinga мониторят 90 критичных сайтов на обоих сетях. Мониторинг помогает ATLAS максимизировать использование времени луча на коллайдере, и собрать для физиков наибольшее возможное количество данных.

Расширения на будущее

Уже сейчас есть планы по полной миграции системы мониторинга эксперимента ATLAS на Icinga, mod-gearman и ganglia, что позволит мониторить 3000 хостов и выполнять 100,000 проверок за один раз. Они будут включать в себя аппаратный мониторинг через IPMI, и вероятнее всего будут работать на одной центральной инсталляции системы мониторинга с исполнительным процессом mod-gearman, как и другие инсталляции icinga.

Расширение мониторинга Icinga в CMS также находится в работе. Планируется создать большее количество выделенных сервисов для мониторинга добавляемого в настоящее время программного обеспечения, на котором базируется эксперимент. В расширении границ мониторинга Icinga, команда IT CERN может быть уверена в том, что у них будет наилучшая эффективность в мониторинге БАК и эксперименты будут действительно реальной наукой. Занимательный факт — мониторинг icinga уже играл свою роль за кулисами, когда был обнаружен бозон Хиггса. И по мере того, как БАК и его оборудование продолжает сталкивать частицы и беспрепятственно собирать данные, Icinga будет работать и дальше на науку и предстоящие открытия.

Читать еще:  Музей «Три балбеса», США - обзор

Большой адронный коллайдер: назначение, открытия и мифы

Большой адронный коллайдер (БАК) — самый большой и мощный ускоритель частиц в мире. Он был построен Европейской организацией ядерных исследований (ЦЕРН).

10 000 ученых и инженеров из более чем 100 разных стран работали вместе над созданием этого проекта. Его строительство стоило 10 миллиардов долларов. В настоящее время это самая большая и сложная экспериментальная исследовательская установка в мире.

Как выглядит Большой адронный коллайдер

Это гигантский замкнутый туннель, построенный под землей. Он имеет длину 27 километров и уходит на глубину от 50 до 175 метров.

Находится коллайдер на границе Франции и Швейцарии, недалеко от города Женева.

Как работает Большой адронный коллайдер

Слово «коллайдер» в этом случае можно перевести как «сталкиватель». А сталкивает он адроны — класс частиц, состоящих из нескольких кварков, которые удерживаются сильной субатомной связью. Протоны и нейтроны являются примерами адрона.

БАК в основном использует столкновение протонов в своих экспериментах. Протоны — это части атомов с положительным зарядом. Коллайдер ускоряет эти протоны в тоннеле, пока они не достигнут почти скорости света. Различные протоны направлены через туннель в противоположных направлениях. Когда они сталкиваются, то можно зафиксировать условия, подобные ранней Вселенной.

Откуда берутся протоны в для столкновения?

Для этого ионизируются атомы водорода. Атом водорода состоит из одного протона и одного электрона. Во время ионизации удаляется электрон и остаётся нужный для эксперимента протон.

БАК состоит из трёх основных частей:

  1. Ускоритель частиц. Разгоняет и сталкивает протоны с помощью системы мощных электромагнитов, расположенных вдоль всего тоннеля.
  2. Детекторы. Результаты столкновения нельзя наблюдать напрямую, поэтому мощные детекторы улавливают максимум данных и направляют их на обработку.
  3. Грид. С детекторов поступают петабайты данных. Для их интерпретации используется грид-инфраструктура — сеть из компьютеров в 36 странах, которые совместно образуют один суперкомпьютер. Но даже этого хватает только на обработку 1% данных.

Зачем нужен Большой адронный коллайдер

С помощью БАК можно изучить элементарные частицы и способы их взаимодействия. Он уже многому научил нас в области квантовой физики, и исследователи надеются узнать больше о структуре пространства и времени. Наблюдения, которые делают учёные, помогают понять, какой могла быть Вселенная в течение миллисекунд после Большого взрыва.

Какие открытия совершили на БАК

На данный момент самое большое открытие — это бозон Хиггса. Это одно из важнейших открытий 21 века, объясняющее существование массы частиц во Вселенной. Это подтверждает Стандартную модель, с помощью которой сегодня физики описывают взаимодействие элементарных частиц. Именно на этом взаимодействии основано устройство всей Вселенной.

Читать еще:  Бутырская тюрьма, Россия - обзор

Суть работы бозона Хиггса в том, что благодаря ему другие элементарные частицы могут иметь и передавать свою массу. Но это очень и очень упрощённое понимание, и если Вам интересно, почитайте научную литературу.

С полным списком всех открытий на Большом адронном коллайдере можно ознакомиться на Википедии.

Может ли коллайер уничтожить Землю

С момента запуска БАК стал объектом разнообразных домыслов. Самый известный — в ходе экспериментов может образоваться чёрная дыра и поглотить планету.

Есть две причины, чтобы не волноваться.

  1. На БАК не происходит ничего такого, чего не делают космические лучи, которые ежедневно попадают на Землю, и эти лучи не создают чёрных дыр.
  2. Даже если Большой адронный коллайдер действительно создаст чёрную дыру, то она будет крошечной. Чем меньше чёрная дыра, тем короче ее жизнь. Такая чёрная дыра превратится в энергию, прежде чем сможет причинить вред людям.

Надеемся, Вам было интересно, как и нам во время работы над этим материалом!

Как выглядит Большой Адронный Коллайдер изнутри — видео из CERN

Крупнейший в мире ускоритель элементарных частиц — Большой адронный коллайдер (БАК), расположен около Женевы, на границе Франции и Швейцарии. Коллайдер находится под управлением ЦЕРН — Европейской организации по ядерным исследованием, и скрыт в подземном круговом тоннеле, протяженность которого составляет почти 27 километров.

Большой адронный коллайдер является самой крупной экспериментальной установкой в мире, в строительстве которой принимали участие около 10 000 инженеров и ученых из более чем 100 стран мира. Гигантское сооружение, в котором элементарные частицы ударяются друг о друга со скоростью света, предназначено для обнаружения хоть каких-нибудь отклонений от Стандартной модели в физике.

Для мониторинга правильной работы столь сложного сооружения, специально для ЦЕРН был разработан робот-инспектор по имени «TIM» (акроним от «Train Inspection Monorail»), главной задачей которого является проверка работоспособности элементов коллайдера в режиме реального времени по всей обширной системе тоннеля. Перемещение робота «ТIМ» осуществляется с помощью монорельсовой дороги, прикрепленной к потолку тоннеля. Эта монорельсовая полоса осталась еще с периода 1989-2000 годов, когда на месте тоннеля Большого адронного коллайдера функционировала другая экспериментальная установка — Большой электронно-позитронный коллайдер, которая была закрыта и демонтирована в 2001 году. В те дни монорельс выглядел немного иначе и предназначался для перемещения работников и различных необходимых объектов и вещей.

Сегодня, по обновленной монорельсовой дороге со скоростью 6 км/ч перемещаются уже не рабочие, а робот-инспектор «TIM», собирая данные по состоянию структуры тоннеля, температуры воздуха и процентного содержания кислорода. Робот также может замерять уровень излучения и предоставлять операторам визуальные и инфракрасные снимки внутри тоннеля . При необходимости, робот «TIM» может также присоединять к своему составу несколько других вагонов с различным оборудованием, предназначенным для выполнения иных задач.

На данный момент в БАК существует два робота «TIM», оба из которых выполняют задачи для обеспечения безопасной работы коллайдера. Взгляните, как выглядит этот процесс в видео, опубликованном CERN:

Источники:

http://m.habr.com/post/170135/
http://topor.info/hi-tech/bolshoj-adronnyj-kollajder
http://under35.me/2016/12/large-hadron-collider-inside/

Ссылка на основную публикацию